
Lab 4: Flappy Bird
Professor Patt has played the game Flappy Bird, but was very annoyed because of the difficulty. As
a computer man, he would like to make a slower version of this game. Your job is to help him to
finish the basic part of this game and display it in LC3's console.

Implementation Details
You are required to write in LC-3 assembly language.

Your program should consist of three parts:

The system booting code, starting at 0x0200.

The interrupt service routine, starting at ().

The user program, starting at x3000.

You can write more than one .ORIG and .END pairs in a single .asm file, in order to making

your code distributed in different memory addresses.

User program

The user program prints continuously and infinitely. In the original game, a bird is flying from left
to right, but you may fly from top to bottom. In the game, the bird is represented by 3 continuous
chars(for example aaa). Without control, it will fall to left, but the user can make it fly to right 1-9
blocks (chars) by pressing corresponding numbers. By the way, the bird will change its appearance
after the user presses a-z . You should print 20 chars each line, and use . as air.

Here is an example:

.....aaa............ User Input(you don't need to echo it)

....aaa.............

...aaa..............

............aaa..... <-9

...........aaa......

.................aaa <-8

................aaa.

...............aaa..

..............aaa...

.............aaa....

............aaa.....

...........aaa......

..........aaa.......

.........aaa........

........ddd......... <-d

.......ddd..........

......ddd...........

.....ddd............

....ddd.............

...ddd..............

..aaa............... <-a

.aaa................

aaa.................

aaa.................

ooo................. <-o

af://n0
https://flappybird.io/
af://n3
af://n17

Falling to ground (the leftmost side) won't end the game. Flying too high (right) is not allowed. Just
put the bird on the rightmost side if it fly out of the screen.

Delay for a short time between two lines so that our eyes can keep up with the output. A simple
way to delay is to count down from 256 (or any number) to 0, like:

Set the initial position and appearance of the bird by yourself.

Interrupt service routine

Once someone hits the keyboard, the keyboard interrupt service should handle the input and do
some corresponding work.

The detail is left for you to finish.

(Here are some default trap and interrupt service routines in LC-3, you can find them between
x0000 and x2FFF in memory.)

System booting code

You may have already observed that the system booting code in the LC-3 simulator is located at
x0200:

ooo.................

....ooo............. <-4

...ooo..............

DELAY ST R1, SAVER1

 LD R1, COUNT

LOOP ADD R1, R1, #-1

 BRnp LOOP

 LD L1, SAVER1

 RET

COUNT .FILL #256

SAVER1 .BLKW #1

 .ORIG x0200

 LD R6, OS_SP

 LD R0, USER_PSR

 ADD R6, R6, #-1

 STR R0, R6, #0

 LD R0, USER_PC

 ADD R6, R6, #-1

 STR R0, R6, #0

 RTI

OS_SP .FILL x3000

USER_PSR .FILL x8002

USER_PC .FILL x3000

af://n25
af://n28

The original system booting code is executed in supervisor mode. It initializes the system stack at
x3000 (OS_SP), and then pushes PSR (USER_PSR) and PC (USER_PC) for user mode, and then
finally RTI to the user code at x3000 (USER_PC).

In order to make the keyboard interrupt enable, some operations are necessary. Please re-write
the system booting code, furnishing the requirements for the keyboard interrupt. Here are some
hints:

1. You should enable the keyboard interrupt. The interrupt enable bit is part of the device
status register. For the keyboard, the device status register, i.e. KBSR, is located at ().
Therefore, you should do ().

2. You should let the machine know how to handle the keyboard interrupt. The interrupt vector
INTV for the keyboard is x80. Therefore, you should put the starting address of () in the
correct place in the interrupt vector table, that is ().

Limitation
input char: 0-9 and a-z

Grading
Lab 4 takes 7% of the total score, consisting of Check part (50%) and Report part (50%).

Check Part

First upload your code to Learning in ZJU, then find a TA to check your code in person. TAs
will first test the correctness of your program, then ask you some questions to make sure you
understand what you code but not cheat.

You can try again if you fail in checking, but there will be a penalty of -10% (of checking part)
for each try.

We strongly suggest you to make a thorough test by yourself before checking.

We strongly suggest you to write enough comments in your code so that you will be aware of
what's going on in your program and confident to answer TA's questions.

Report Part

Report must be written in English, concise and carrying main ideas. Try to use the report to
convince TAs that you complete the task by yourself.

Your lab report should contains the following contents:

Algorithm. Flowchart or Pseudocode is prefered. The complexity of your algorithm will
not affect your score.

Essential parts of your code with sufficient comments. Please only select the most
important code phases and explain them.

Questions that TA asked you, and Answers.

No more than 3 A4 pages. No template provided. Be sure to make it readable.

af://n38
af://n43
af://n45
af://n55

Penalty

Wrong Answer: -10% of Check part each time.

Delay: -20% of the corresponding part per day.

Cheating: -100% of this lab. Additionly, -10% of the final score of this course. Please note
that uploading your answer to the Internet is also CHEATING!!!

af://n70

	Lab 4: Flappy Bird
	Implementation Details
	User program
	Interrupt service routine
	System booting code

	Limitation
	Grading
	Check Part
	Report Part
	Penalty

