The LC-3

= Abstract

e The ISA of LC-3
o Memory Organization
o Registers
o Instruction Set
= QOperate
= Data Movement
= Control

e Microarchitecture of LC-3. (Datapath)

6 Tip

It's worth noting that in the notes I skip many examples on the book. However, if
you have not taken the course Assembly Language, or not familiar with
programming in assembly language, please read the example on the textbook
carefully and practice it sufficiently.

1 TheISA: Overview

The ISA specifies the memory organization, register set and instruction set, including
the opcodes, data types, addressing modes of the instruction in the instruction set.

1.1 Memory Organization

o address space: 216 (i.e. 65536) locations.
Not all 65536 addresses are actually used for memory locations.
e addressability: 16 bits. We refer to 16 bits as 1 word in the LC-3, so it's also

called word-addressable.

1.2 Registers

As mentioned before, each register is called a GPR (General Purpose Register). They
are referred to as RO, R1,... RT7.

Registers store information that can be operated on later, and they are stored register
files, where CPU can access them faster than memory.

1.3 The Instruction Set

An instruction is made up of its opcode and operands.
The instruction set is defined by its set of opcdeos, data types and addressing modes.

1.3.1 Opcodes

The LC-3 ISA has 15 instructions and the opcode is specified in bit[15:12] . The code
1101 has been left unspecified.

1.3.2 Data Types

Every opcode will interpret the bit patterns of its operands according to the data type it's
designed to support.

The same bit pattern can correspound to different number, depending on instructions that
interpret it. eg. ADD R2, R1, #1 , LD R2, #1 . In ADD, #1 is interpreted as a number
for arithmetic, while in LD, #1 is interpreted as an address.

1.3.3 Addressing Modes

An operand can generally be found in one of 3 places: in memory, in a register or as a
part of the instruction. If the operand of the instruction, we refer to it as a literal or as an
immediate operand.

The LC-3 supports 5 addressing modes: immediate (or literal), register and 3 memory
addressing modes: PC-relative, indirect and Base+offset.

2 The Instruction Set of the LC-3

2.1 Operate Instructions

2.1.1 NOT

15 14 13 12 11 10 9 8§

ol
— | o
— |
_
— |
— o
—

!l 0 o0 1[0 1 1]1

— o

NOT R3 RS

The NOT (opcode=1001) instruction is the only operate instruction that performs a
unary operation. bits[11:9] is DR, bits[8:6] is SR, and bits[5:0] are set to 1.

The datapath of NOT is as follows:

chapter 5 I|he LC-3

R1

R2
Y

R3 0101000011110000

R5 1010111100001111

16

Nz[P]

Jre
l B A
Locic| NOT ALU

Figure 5.4 Data path relevant to the execution of NOT R3, R5.

For binary operations (like ADD, AND) the datapath is almost the same except the
operand B which is also from the register files.

2.1.2 Immdiates In Operate Instructions

The diagram below shows ADD R1, R4, #-2 . Note that we the operand B is computed
by signed-extending bits[4:0] to 16 bits. And since there is only 5 bits to store

immediates, not all 2's complement intergers can be immediate operands. (only
[—16, 15])

RO
R1 | 0000000000000100
R2
ADD R1 R4 -2 R3
IR ‘0001‘001‘100‘1‘“110| R4 | 0000000000000110
5 R5
SEXT R6
16 R7
1111111111111110
Bit[5] Y
16
Nfz[P) 5\ A
il ADD ALU
LOGIC

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2.

With the help of NOT and ADD (with immediate), we can implement the substraction.
(Recall that in Chapter 2, the negative of an integer represented in 2's complement can
be obtained by complementing the number and adding 1)

2.1.3 The LEA Instruction

LEA (opcode=1110) loads the register specified by bits[11:9] of the instruction with
the value formed by adding the incremented PC to the sign-extended bits[8:0] of the

instruction.
LEA is useful to initiallize a register with an address.

Note that the values to be loaded into the register does not involve any access to
memory, and it does not affect CC.

15 0 RO
IR|1110|101|111111101| R1
LEA R5 x1FD

R2

IR[8:0] R3
R4

PC |O1OO 0000 0001 1001| SEXT

R5 |0100000000010110
16

RE
R7

1T111111111111101

16

16

Figure 5.6 Data path relevant to the execution of LEA R5, #-3.

2.2 Data Movement Instructions

The process of moving information from memory to a register is caled load, and the
process of moving information from a register to a memory is called store.

The LC-3 contains 6 instructions that move formation: LD, LDR, LDI, ST, STR, STI.
The format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| opcode | DRorSR | Addr Gen bits |

e PC-Relative Mode: LD and ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 o1t 1 0 1 O 1 1 1 1
LD R2 x1AF
e Indirect Mode: LDI and STI
Is 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| | 0 | 0 I 0 | | I 1 1 1 O O 1 1 0 O |
LDI R3 x1CC

e Base+offset Mode: LDR and STR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[0 T 1 0]0 0 T[]0 T 0J0O I 1 1

LDR R1 R2 x1D

Note that laod instructions will influence CC, while store not. The value that is finally
read from memory and will be loaded to the register determine CC.

It's also worth noting that if some bits specify DR in load instructions, then it will
specify SR in store instructions.

2.2.1 PC-Relative Mode

LD (opcode=0010) and ST (opcode=0011) specify the PC-relative addressing mode.

The memory address is computed by signed-extending bits[8:0] to 16 bits and adding
the result to the incremented PC (incremented during FETCH phase).

Note that the address of the memory opearand is limited to a small range. (
[—255, +256])

15 0 RO
R [oo10p1di10101111 R1
LD Rz xIAF R2 [0000000000000101
IR[8:0] R3
R4
PC ‘0100 0000 0001 1oo1|
RS
16
RG
1111111101011
16
ADD
16 16 ®
IN[z]P]
% MAR MEMORY MDR
LOGIC

Figure 5.7 Data path relevant to execution of LD R2, x1AF.

2.2.2 Indirect Mode

LDI (opcode=1010) and STI(opcode=1011) specify the indirect addressing mode.

An address is first formed exactly the same way as with LD, however, the result is the
address of the address of the operand. So we need to interrogate memory twice.

Note that the address of the operand can be anywhere.

15 0 RO
IR [1010/011/111001100| R1
LDI R3 xICC RO
R[g:0] R3[1111111111111111
R4

PC |o1oo 1010 0001 1100] SEXT
16

R5
R6

XFFCC R7
16
ADD
16 16 @
®
IN[z[P] MAR MEMORY | L MDR]
LOGIC (®x2110
] @6

Figure 5.8 Data path relevant to the execution of LDI R3, x1CC.

In the example above, the incremented PC is x4A1C and the sign-extended offset is
xFFCC. So we first get the address x49E8 and get the data in x49E8, which is
x2110 . Then we obtain the data in x2110 and load the value into the register R3 .

2.2.3 Base+offset Mode

LDR (opcode=0110) and STR (opcode=0111) specify the Basetoffset addressing
mode.

The address is obtained by adding a signed-extended 6-bit(bits[5:0]) offset to a base
register(bits[8:6]).

Note that the address of the operand can also be anywhere.

Figure 5.9

15

0

w pr oo o

LDR R1 R2 x1D

IR[5:0]

[sexT |

16

x001D

RO

R1 | 0000111100001111

R2 | 0010001101000101
R3
R4
RS
R6
R7

16

MEMORY MDR

@

23 Control Instructions

Data path relevant to the execution of LDR R1, R2, x1D.

The LC-3 has 5 opcodes that enable the sequential execution flow to be broken:

conditional branch, unconditional jump, subroutine call(funtion), TRAP (service call)

and RT1.

2.3.1 Conditional Branches
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 0 O O |n |z |p PCoffset

BR (opcode=0000) uses condition codes to determine whether or not to depart from the

usual sequential execution. Besides, not all condition codes will be inpected and we can
determine which condition codes will be inspected. e.g. In BRz x0D9 , bit[11:9]=010
so we only check the condition code Z, which means if the result of the last instruction

that can set CC is zero, then we will jump to the target address.

Additionally, if we request to check all condition codes, like BRnzp x0D9 , it means an

unconditional branch. Since the result of the operation can be positive, negative or
zero, so at least one of CC will be set. Meanwhile, if bits[11:9]=000 , nothing will
happen, just like a nop (an insruction but do nothing and will cause no difference)

In summary, it is only ADD, AND, LD, LDI, LDR, NOT that will change CC after
finishing operations.

2.3.2 The JMP Instruction

15 14 13 12 11 10

=])
@]l o
S| =
oo

JMP BaseR

The JMP instruction (opcode=1100) loads the PC with the contents of the register
specified by bits[8:6] of the instruction. (its addressing mode is by register)

2.3.3 The TRAP Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1[0 0 0 O] trapvector |

The TRAP instruction (opcode=1111) changes the PC to a memory address that is part
of the operating system so that the OS will perform some task on behalf of the program.
Once the service call ends, the PC is set to be the address of the instruction following the
TRAP instruction.

¢ Input a character from the keyboard (trapvector = x23)
e OQOutput a character to the monitor (trapvector = x21)

e Halt the program (trapvector = x25)

Some useful trap service routines are given in the P675 Table A.3. The details of the
TRAP instructions will be dicussed in Chapter 9.

3 The Datapath

Here is only a figure of LC-3 datapath. Please be clear of the data flow for each
instruction and the related control signals. A good way is to draw a datapath on your
own hands.

GateMARMUX

AN

16

GatePC

|zexT]

Iy
[7:0]

4o/

‘?/MARMUX
[A

16

ADDR2MUX

A

2
747 PCM
A
16

16

LD.PC—ES

ADDRIMUX

o

[10:0]
b SEXT

[8:0]
[

16

SEXT)—
7+ SEXT]——

3
DR
LD.REG—|

3
SR2—£

SR2
ouT

REG
FILE

SR1| 3
OUT =+—5SRI

GateMDR —,

16 16

LD.MDR—= MDR

16

16

Figure 5.18

L A i T 16

16 /16 Al6 16

0 16
SEXT
[4:0]
[5]
[15:9] |
"| FINITE [&
R —* STATE =
3 » MACHINE

‘B-

16

MEMORY

16

MEM.EN, R W

The data path of the LC-3.

« LD.MAR

\/GateALU

INPUT

OUTPUT

